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ABSTRACT 

We present  here  a (weak) axiom which implies some  of the  consequences  of 
MA,  but is consistent with GCH,  We use the  method  of Jensen in his proof of 
consis (ZFC + G C H  + SH). 

w Introduction 

The aim of this paper is to find a combinatorial principle which is consistent 

with ZFC+ GCH, and which implies some of the consequences of Martin's 

Axiom (plus 2~~ Many mathematical statements, P, have been proved 

independent of ZFC set theory by showing that ~ implies P and the MA + 2 ,0 > 

I'lL implies -n P. In such cases, the question arises as to whether the continuum 

hypothesis can be used instead of ~.  It would be helpful, therefore, to find a 

combinatorial principle consistent with ZFC + GCH, which has as its conse- 

quences many of the consequences of MA + 2 "0 > ~1. Now, Solovay and Tennen- 

baum in 1965 established (see [6]), by means of an iterated forcing argument, the 

consistency with ZFC of the Souslin Hypothesis, and after examining the proof, 

Martin and, independently, Rowbottom formulated the principle MA and made 

the slight changes to the Solvay-Tennenbaum argument in order to prove the 

consistency of MA + 2No> N1. Later, in 1969, Jensen obtained (see [2]) the 

consistency with ZFC + GCH of the Souslin Hypothesis. The question arises: 

Can we extract from the Jensen argument an MA-like principle, provably 

consistent with GCH by a Jensen style argument? In other words, we want to 

solve the following "equation" for x: 
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MA x 
Solovay-Tennenbaum Jensen 

This paper presents a partial solution to this equation. Our solution is not 

strong enough to yield "Every Aronszajn tree is special", but will hopefully have 

many consequences other than the three we present here. These three applica- 

tions are: 

(1) the solution to a problem of Hajnal and Mate about chromatic numbers of 

graphs (see [4]); 

(2) a result about the weak uniformisation of colouring of ladder systems; 

(3) a strengthening of (2). 

In order to complete the (present) picture, one should read [3], which shows 

why we could not obtain stronger results in one direction, and [5], w6ich 

describes an entirely different approach to the problem of proving the consis- 

tency with GCH of known consequences of MA + 2 "0 > N1. 

The history of the present paper is as follows. In [1], Avraham and Shelah 

formulated and proved the consistency with GCH (by a Jensen style argument) 

of an axiom which solved (1) above (together with some variations of (1)). In 

1976, Devlin, while dealing with a question of Shelah, showed that one cannot go 

too far in this direction, by proving that if the CH holds, then every ladder 

system on to1 possesses a colouring which is not uniformisable. (See [3] for 

details.) However, Devlin was able to establish the consistency with GCH of the 

statement that every colouring of every ladder system is weakly uniformisable: 

this is result (2) above. Finally, Avraham and Shelah formulated the combinator- 

ial principle presented in this paper, and proved its consistency with GCH. The 

proof is along the lines of Jensen's proof (in [2]), but is simpler because there is 

no need for the closed unbounded set forcing required there. Result (3) is due to 

Shelah. Section 4, where we show that the combinatorial principle does not 

imply the Souslin Hypothesis, is due to Avraham and Shelah. 

Apart from the Jensen iteration lemma, which we quote here without proof, 

the paper can be read without knowledge of [2]. Our notation and terminology is 

standard. We use II to denote the set of all countable limit ordinals. K ~ denotes 

{flf: A"*K}, and K~ = I,.J~<~K ~. 

w Formulation and applications of the principle 

A tree is a poset T = (T, ~ ) such that for every x in T, ~ = {y E T I y <rx} is 

well-ordered by <r, the order-type of ~ being the height of x, ht(x). The a ' th  

level of T is the set To = {x ~ TIht(x ) = a}. We set Tla = U~<,Ta. The height 
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of T is the least A such that T~ = 0 ,  and is denoted by ht (T)'. A branch of T is a 

maximal, totally ordered subset of T; if cz is its order-type it is called an 

or-branch. A tree T is normal iff: 

(i) h t (T)  is a limit ordinal; 

(ii) for all cz </3 < h t ( T )  and all x ~ T, there is a y E T~ with x < r y ;  

(iii) if a < h t (T)  and lira(ix), and if x, y E T,, then ~ = 9 implies x = y. 

If T is a tree and $ _C T, we say $ is a subtree of T iff S is an initial section of T 

(i.e. t < r s  ~ S implies t E S) which meets every non-empty level of T. If T is a 

normal tree, a subtree S of T is normal iff S is (with the relativised ordering) a 

normal tree. 

An array offilters is a collection D = {Da.~la ~ ~ &:f ~ toe} such that D~.t is a 

countably complete filter on toL Now let T be a normal tree of height to1 such 

that T~ consists of elements of to ~ and the ordering of T is inclusion. We say T is 

appropriate for the array of filters D iff: 

(i) if a ~ l~ and f E T I a, there is a set A ~ D~.r such that whenever h E A is 

such that f C h  and (V~ < a ) ( h  I ~  T), then h E T; 

(ii) if a ~ ~ and W C T la is a normal subtree of T I a which is closed under 

immediate successors in T (i.e. if a E W N T, and a <rb  E T,§ then b E W), 

then for any f E  W and any set A E D~. t there is h E A  such that f C  h and 

< W). 
Let SAD (for Shelah-Avraham-Devlin) denote the conjunction of the 

following statements: 

(i) GCH; 
(ii) every constructible cardinal is a cardinal; 
(iii) for every cardinal K, Cf(K)= cfL(K); 

(iv) every countable sequence of ordinals is constructible; 

(v) if D is a constructible array of filters, then every tree which is appropriate 

for D has an tol-branch. 

In w we prove that SAD is consistent. (Indeed, we prove a somewhat 

stronger result.) In the remainder of this section, we give two applications of 

SAD. 

Chromatic number of graphs 

Our first application is in graph theory. A graph on a set X is given by a set, E, 

of two-element subsets of X. The members of X are called the vertices of the 

graph, the members of E are the edges of the graph. If {x~, x2} E E, we say xa and 

x2 are connected in the graph. We call the pair g = (X, E )  a graph. The chromatic 

numbers of the graph g is the least cardinal K for which there is a mapping 
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f :  X ~ r such that {xl, x2} E E ---* f(x 0 ~ f(x2). A Hajnal-Mate graph is a graph 

g = (w~, E)  on to1 such that for every a E to~, {fl E a 1{/3, a} E E} is either finite 

or else is an to-sequence cofinal in a. In [4], Hajnal and Mate show that if O 

holds, then there is a Hajnal-Mate  graph of chromatic number 1~,, and if 

MA + 2 "~ > 1,11 holds, then every Hajnal-Mate graph has countable chromatic 

number. They ask the question as to what effect CH has upon the chromatic 

number of Hajnal-Mate graphs and suggest Jensen's method. The next result 

answers this question. 

2.1. THEOREM. Assume SAD. Then every Hajnal-Mate graph has countable 
chromatic number. 

PROOF. Let g = (to~, E)  be a Hajnal-Mate graph. We may assume that g has 

infinite chromatic number. If { f lEal{ f l ,  t~}~E} is infinite, let {r/~(n)}.<. 

enumerate this set in canonical ordering: thus r/, is increasing and cofinal in t~. 

Let T~ be the set of all functions f :  ~ --* to such that: 

(i) if y < 8 < a and {y, 8}E E, t h e n / ( y ) # / ( 8 ) ;  

(ii) if l im(y), y - < a ,  and {/3~yl{/3,  y } E E }  is infinite, then t o -  

~('O~,(n))ln < w} is infinite. 

Let T = U . . . .  To. Under inclusion, T is clearly a tree of height to,. (In 

particular, if f ~ T~ and/3 < a, then f I/3 ~ Te.) And it is easily seen that T is 

normal. 
Placing ourself inside L, the constructible universe, now, we define an array of 

filters. Let a ~ fl,  [ ~ to~. Let O~ be the set of all increasing to-sequences cofinal 

in a, and for p E Q~, let 

ap = {.rE to" It~ - { / ~ ( n ) ) l  n < to} is infinite}. 

Let D~,.r be the countably complete filter generated by {Ap IP E Q~}. (Of course, 

we must check that the family {As IP E Q,,} has the countable intersection 

property: i f p '  E Q~, i < w, we must have a p E Q, such that A,, C_ f"l,<o, At,,. But 

an easy diagonalisation construction gives a p ~ O,, such that ran ( p ' ) -  ran (p) is 

finite for all i, and such a p suffices.) Let D = {D~,r let EI I  & [ ~ to~}. We now 

leave L and return to the real world. We show that T is appropriate for D. Let 

a E l ) , f  E T la. If {/3 E ct 1{/3, a} ~ E} is finite, then for any A ~ D,,r it is the 

case that h E A and h _D f and (Vs ~ < a )  (h Is e ~ T) implies h E T. Now suppose 

{/3 E ct 1{/3, a } E E }  is infinite. Since every countable sequence of ordinals is 

constructible, r/~ E Q~. But then A~. ~ D.,r and for any h ~ A,.,  if (V~ < a )  

(h I s ~ ~ T), then h E T. This verifies property (i) of the definition of appropriate. 

We check (ii). Let a E I I ,  and let W C T la  be a normal subtree of T I a closed 
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under immediate successors. Let f E W, A E Do,t. We seek an h ~ A, h D f, such 

that (V~ <c~)(h I ~  W). Pick 77 E Q~ such that A~ C A .  We construct an 

h ~ o J  ~ such that h D f ,  ( V ~ < a ) ( h I ~ E W ) ,  and w-{h(rl(n))In<oo} is 

infinite (whence h ~ A ,  C A ,  of course). Pick n <~o with r l ( n ) > h t ( / ) .  We 

construct, by induction, functions f, and sets F,, n _-< i < oJ, such that: 

(i) fCC_f,C_f,+,C...C_f~C...; 
(ii) f~ ~ W f3 T,0)+~; 

(iii) E is a set of i integers; 

(iv) F, C F.+,C -.-  C F, C -.-  ; 

(v) F, N{f , (~(k) ) lk_-<i}=~.  

To commence, pick any [. D [ in W M T,~,)+I and let F, consist of any n 

elements of oJ - { f . ( n  (k)) lk _-< n}. Since W is a normal subtree of T [ a ,  this is 

always possible. Suppose now that f~, F~ have been defined. Pick []_D f~ in 

W f'l T,o+l). Now, the tree T clearly has the property that every element has 

infinitely many immediate successors. Hence as W is closed under immediate 

successors in T [a, f'~ has infinitely many successors in W M T,0§ So we can 

find f~+, in W fq T,0+,~+, such that f~§ 3 f'~ and ~+l(r/(i + 1))~ F~. Let F~+, consist 

of F~ together with one new element chosen from oJ - {/~+,('O (k))[ k _-< i + 1}. Set 

h = U~<~/~. Then h ~ w  ~ and h Dr. Moreover, for ~/_-<i<co, h [ r l ( i ) + l =  

f~ ~ W, so (V~ < a)(h 1~ E W). Finally, since {h (rl(k))[ k < oJ} rl (I..J~<~F~) = O, 

~o - { h ( r  I [(k))Ik < oJ} is infinite. So we are done. 

We may now apply SAD to conclude that T has an o~-branch. Let b be an 

~orbranch of T, and set l =  Ub. Then lEr and whenever {a , /3}~E,  

l(a) ~ I(~). Hence g has countable chromatic number. [] 

Weak uniformization of ladder systems 

Our second application of SAD concerns ladder systems. Let a E ~.  A ladder 
on a is an increasing oJ-sequence cofinal in a. A ladder system is a sequence 

(rl~ [a ~ ll) such that ~/~ is a ladder on a for each a ~ 1~. An co-colouring of a 

ladder system ( ~  [ a ~ l'l) is a sequence (k~ [ a ~ 1"~) such that k~ E ~o ~ for each 

a E I1 (the idea being that k.(n) is the colour assigned to ~/~(n) in the ladder 

~7~). A uniformisation of a colouring (k~ [a ~ 11) of a ladder system (~, [a ~ fl) 

is a function h : o~ --* r such that for every a ~ 11, k~ (n) = h (B. (n)) for all but 

finitely many n. The basic question is: does every colouring of ,a ladder system 

have a uniformisation? Shelah introduced these notions and proved that if 

MA + 2 ~~ > ~ is assumed, the answer is "yes" (for any ladder system), and if ~ is 

assumed, the answer is "no".  

But the question does not provide our application of SAD, for Devlin proved 
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that the assumption of O above can be weakened to CH, or even 2 "~ 2",. 

(Details of all of this can be found in [3].) So Devlin considered the following 

weaker notion. A weak uniformisation of a colouring, k, of a ladder system, r/, is 

a function h = tot ---> to such that for every a ~ f~, k~ (n) = h (r/~ (n)) for infinitely 

many n. The Shelah proof shows that if O holds, then every ladder system has a 

colouring which is not weakly uniformisable. Devlin was able to prove that in 

this case, the assumption of O cannot be weakened to CH. We prove this here by 

deducing from SAD the fact that every colouring of every ladder system is 

weakly uniformisable. 

2.2. THEOREM. Assume SAD.  Let 71 = (~l, I a E 1)) be a ladder system. Let 

k = (k~ l a E l-l) be a colouring of 77. Then k is weakly uniformisable. 

PROOF. Let T~ = {f E too I(Vy E 1) n (a + 1)){n ~ to I f(r / , (n))  = kv(n)} is 

infinite}. Clearly, T = U . . . .  T~ is, under inclusion, a tree of height to1. Indeed, T 

is normal, as is easily seen. Placing ourselves in L, we define an array of filters. 

Let a E fl, )f ~ tog. Let Q, be the set of all increasing to-sequences cofinal in a. 

For all i E to~ and all p E Qo, set 

A,.p = {g E too I{ n E to Ig(p(n) )  = i(n)} is infinite}. 

Let D~. I be the countably complete filter generated by the set {A~,p l i E to" & 

p E Qo}. To see that T is appropriate for the array defined, observe that if 

g E T~ then for any n < to, g U{(a, n )}E T~.1; hence if W C TI3', 3' E f l ,  is a 

normal subtree closed under successors, f E W, i E to ~ and p : to --* a is increas- 

ing and cofinal in a (assume height Of) < p (0)), then for some g, f _C g, g: 3' ---> to, 

(V~:< 3 ' ) (gl~:)E W and g ( p ( n ) ) = i ( n )  for all n < t o .  So by SAD, T has an 

to~-branch, say b. Clearly, f = U b is a weak uniformisation of k. []  

A generalization 

We present here a generalization of the preceding section. Let Eo, a ~ 1) be 

non-principal filters E~ _C P(to) such that every set of positive measure in Eo can 

be decomposed into Nt almost disjoint subsets with positive measure. 

Let (r/~ I a E f~) be a ladder system and (Ca l a E I~) a colouring. F : to~ ---> to is 

a weak uniformisation (relative to (E~ I c~ E I~)) iff for each a ~ I~ {n I F(r/~ (n)) = 

Co(n)} is of positive measure in E~. 

2.3. THEOREM. Assume SAD.  Let (71~ l a E 0 )  be a ladder system, 

(C, la Eta)  be its colouring and (E~ It~ E l i )  a sequence in L of Iilters with the 

properties above. Then there is a weak uniformisation relative to (Eo I ~ ~ f~). 
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PROOF. Construct the tree T C oJ,~ as follows: 

T, = {f: a ---} to [for any limit 3, ~< a,{n [ / ( ~ ( n ) )  = C~(n)} 

has positive measure in E~}. 

Our tree T is U , ~ , T , .  Now we define in L the array of filters which will make T 

appropriate. For  a ~ l'l, c: ~o ~ to and r: to ~ a (r is, increasing and cofinal in 

a )  we define Ac,, = {f: a --* co [{n [ f ( r (n))  = c(n)} has positive E~ measure}. To 

see that for each a E l l  the filter generated by {Ao,, I c : oJ ~ to, r: o~ ~ a is 

increasing and cofinal} is countably complete and to check condition (ii) in the 

definition of appropriateness we need the following lemma: 

1.4. LEMMA. I[ E., n < to is a countable set of non-principal filters on to such 

that for any filter E,, any A with positive measure ( -  A ~ E . )  can be split into l~ 

almost disjoint sets of positive measure (i.e. A = [-J~<~,,A=, A~ n Ao is finite and 

A~ is of positive E.  measure) then there are disjoint A., n < to such that A .  is o[ 

positive measure in E.. 

PROOF. Define by induction on n < ~o, A ,  C_ to such that A.  is of positive E,  

measure and for no l < w is U ~ . A k  E E~. 

w The consistency of SAD 

Assume V = L. We construct a complete boolean algebra, B, such that: 

(i) B has cardinality 1~2; 

(ii) B satisfies the C.C.C.; 

(iii) B is (to, oo)-distributive; 

(iv) II SAD I1" = 1. 

By virtue of (i)-(iii) and standard facts about forcing, the only part of (iv) which 

we shall need to check is the crucial clause concerning trees appropriate for 

arrays in V ( =  L).  

The construction of B is by an inductive procedure. We construct an iteration 

sequence (B, [v < oJ2) of complete boolean algebras such that: 

(v) B0 = ~ ; 
(vi) B, has cardinality ~1; 

(vii) By satisfies the C.C.C.; 

(viii) B, is (o~, ~)-distrubitive. 

Then if we set B = l i m , _ ~ B ,  conditions (i)-(iii) follow immediately from 

(vi)-(viii). And, of course, the idea is to construct the iteration sequence so that 

B will satisfy (iv). Now, in constructing our  iteration sequence there are two 
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different cases which arise. At successor stages we shall arrange for the limit 

algebra to satisfy (iv). At limit stages we shall just try to keep the iteration going, 

preserving conditions (vi)-(viii) in particular. The problem as to what is required 

to ensure that the limit construction is possible was solved by Jensen some years 

ago. We describe briefly what is needed. The details can be found in [2]. 

Recall that a Souslin tree is a normal tree, T, of height to,  such that any 

pairwise incomparable subset of T is countable. An algebra B~ will satisfy 

conditions (vi)-(viii) if[ there is a set T C_ B ,  0 ti~ T, such that, under -->B, T is a 

Souslin tree. In this case, B tuBA(T) ,  where B A ( T )  denotes the complete 

boolean algebra determined by the poset T in the usual manner. (We usually 

assume B A ( T )  isomorphed so that T is a dense subset of it.) An algebra B~ 

satisfying (vi)-(viii) is thus called a Souslin algebra, and a subset T _C B~ of the 

above kind a Souslinisation of B~. Any Souslin algebra has essentially only one 

Souslinisation, in the sense that if T, T '  are Soulinisations of B~, then for some 

club set C C_ tax, a E C--* To = T ' .  Now, normally, when one constructs an 

iteration sequence (B~ I v < ta2), is suffices that By is a complete subalgebra of BT 

whenever v < r. But in order  for our construction to proceed, we require a 

stronger notion. Suppose v < r and B~ is a complete subalgebra of B ,  The 

canonical projection h,~: B~ ---* B~ is defined by hT~(b ) = inf~{d E B~ I b<=,d} Now 

let T ~, T ~ be Souslinisations of B ,  B ,  We say B~ is a nice subalgebra of B~ iff 

there is a club set C C_ ta~ such that for any ~ E C, hT~[T~] = T~. The following 

result is proved in [2], page 86. (Recall that we are assuming V = L here. Some 

known consequences of V = L are required for this result to hold.) 

3.1. LEMMA (Iteration Lemma). Let tr be a function such that tr(O) is a Souslin 

algebra, and such that whenever (By IO < v <- r )  is a nicely increasing sequence of 

Souslin algebras, ~ < ta2, tr((B~ I v <= r)) is a Souslin algebra of which B, is a nice 

subalgebra. Then there is a sequence (B~ I v < ta2) such that 

(i) Bo = or(O); 

(ii) 0 < v < oo2--* B~ is a Souslin algebra ; 

(iii) B~+~ = cr((B. I r _-< v)); 

(iv) v < "; < ta2-'~ Bv is a nice subalgebra of B ,  [] 

With 3.1 at our disposal, we now turn to the problem of what to do at 

successor stages in the iteration: in other words, we "define" the function tr 

which we shall eventually plug into 3.1. The following lemma summarises what 

we require. We need the following notion: 

An array of filters, D, is said to be principal if each filter in D is a principal 

filter. 
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3.2. LEMMA (~). Let B be a Souslin algebra. Let D be a principal array of 

filters. Let 7" E V ~> be such that 

II f" is a normal to~-tree which is appropriate for l~ II a = 1. 

Then there is a Souslin algebra B such that B is a nice subalgebra of B and 

II 7"has an torbranch II ~ = 1. [ ]  

Before we prove 3.2, let us see how this gives the desired consistency result. 

Fix some bijection O: to2 x to2 x to2 ~ to2 such that 0 (a,/3, 30 - a,/3, y for all 

a,/3, y. Let i, j, k be the inverse functions. By GCH,  there are 1~12 principal filter 

arrays, so let (D~ I a < to2) enumerate  them. Suppose v < to2 and that (B, I 0 < 

z =< v) is a nicely increasing sequence of Souslin algebras. Set a = i(v), /3 = j (v) ,  

y = k(v) .  Let 

X~ = {2~E Vta*)ll[ ~ is a normal o~l-treell Ba = 1}. 

Assuming (as usual) that V B* is normalised with regards to boolean equality, 

I X~I = ~2. Let (~a.~ I f  < oJ2) be some enumeration of X~ as a one-one ~o2- 

sequence. 

If  II ~~ is a normal tol-tree which is appropriate fo r / )~  II ~- -- 1, w e  may obtain 

a Souslin algebra B = o-((B~ I r =< v)) from B ,  ~a.,, D~ as in 3.2, so that B~ is a 

nice subalgebra of B and II i""~ has  an to~-branch II ~ = 1. Letting o-(0) be any 

Souslin algebra, we thus obtain a function satisfying the requirements of 3.1. Let 

(B~ t v < to2) be as guaranteed by 3.1. Let  B = l i m ~ B ~ .  By the C.C.C., 

B = I,.} ~<~B~. We show that B is as required. By our previous remarks, we know 

that it suffices to prove the following lemma: 

3.3. LEMMA. I I S A D F = I .  

PROOf. Suppose not. Then, by the maximum principle we can find a D E V 

and a I" E V s such that: 

(i) D is a filter array in V; 

(ii) II ~" is a normal tor t ree  which is appropriate f o r / ~  II ~ -- 1, 

(iii) II ~ has an torbranch II ~ < 1. 
Since II ~" _c ,o~11 ~ = 1 and  tl o ~  = ( , o ~ y  II ~ = 1, w e  can f ind a ~ < to2 such tha t  

~ V<~. 

Let D = {D,,~ I a E [1 & f E oJ~}. For  each pair (a , [ ) ,  well-order Da,~ as 

(A ~"'l ~ < eo2). 

Let  Ea,1 be the set of all ~ < co2 such that 
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[[if ]rE ~ and if f C  h ~ (AT"f) v and if 01~7 < d) (h  I t / E  T), 

then h E ~;  and ~ is least for which this occurs [[B~ > 0. 

Since Bs satisfies the C.C.C., Ea.~ is clearly countable. Let A ~'r= [")r "f. 
Since D~.f is countably complete, A " I ~  D~.r" 

Let D' ,I  be the principal filter generated by A ~'r. Let 

D'  = {D '~.~ [ a ~ ~ & f E ca~}. 

D '  is thus a principal filter array. It is easily seen that 

I] ~ is appropriate for /~' [[8, = 1. 

For some /3 < to2, D '  = D~. For some y < to2, ~" = T~". Let v = 0(8, fl, y). By 

construction of By+l, 

It 7~ has an oJrbranch [[8 . . . .  1. 

Hence ]1 7" has an 00rbranch [[a = 1, a contradiction. The proof is complete. [] 

It remains only to prove 3.2. We have the following situation: D is a principal 

array of filters, D = {Da. I l a E ~ & 1' E coS}, A..f generates D.,f for each a,[, B 
is a Souslin algebra, and ~ E V t~> is such that 

II f" is a normal oJrtree which is appropriate f o r / )  II" -- 1. 

w e  must show that there is a Souslin algebra/3 such that 

If "/~ has an ~o,-branch IP = 1. 

What we shall in fact do is construct a Souslin tree T such that /~ = BA(2r) is as 

required. 

Let T be a Souslinisation of B. (We take care not to confuse T and 7"!) We 

construct our Souslin tree by recursion on the levels, simultaneously constructing 

a stricly increasing, continuous function y:  oJ~---, oJ~. The elements of T~ will be 

pairs (x, f )  such that x E T,<~, [ ~ to ~, and x II-B " f  E 7"". The ordering of 7 ~ will 

be 
(x,f)<=,(x',f  ') iff x<=rx ' and fC_['. 

(Recall, however, that ----r = >B tq T 2, with a reversal of the orderings here!) 

We shall carry out the construction to preserve the following conditions: 

(I) If ( x , f ) ~  7"~ and a >/3 and x ' E  T,t,> and x'>rx, then for some I'D_t, 
(x',f')e 

(II) If ( x , f )E  7"o and x ' E  T,<.+,, x<rx ' ,  then for each n E to, -either 
x' I = .  " / O  {(&, ri )} E ~ "  or else x 'lt-a ,,)r U {(&, ri )} ~ ~/'". 



Vol. 31, 1978 CH AND MARTIN'S AXIOM 29 

(III) If x ET~,) and W={fl(3x'<=rx)[(x',[)~7"]}, then x ll-s"l,~/ is a 

normal subtree of 7`1& + 1 which is closed under immediate successors". 

Defining h : /" ~ T by h (x, f )  = x, h induces (in a natural manner, described 

fully in [2]) a complete embedding, e, of B into/~ = BA(7  ~) for which h is the 

restriction to 7` of the canonical projection. (This uses condition (I) above.) It 

follows at once that, up to isomorphism, /3 is a nice extension of B. 

We shall not dwell any further on the details, but shall commence at once with 

the construction of /~, We need a version of the combinatorial principle '~. As 

usual, H,~ denotes the collection of the hereditarily countable sets. For a < to,, 

we set H .  = H,~.n V~. By V = L, there is a sequence (S~ [a < to~) such that each 

S. is a countable subset of Ha and, whenever A C_H,~ and a < 

to, ~ I A n H~ I -< M0, then {a E to, I A n Ha = S, } is stationary in to,. We fix this 

sequence from now on. 

To commence the construction we set 

= {(x, O) J x e To}; 

v(0) = 0. 

Now suppose T., y ( a )  are defined and we wish to define T,+~, y(a + 1). For each 

(x, f ) E  7". and each n E to, let E,,t.. be a maximal, pairwise incomparable set of 

extensions x'  of x in T such that either x'tt-B "]~ U {(&, ri)}~ 7`" or x'll-a " ]  U 

{(&, ti)} ~ 7`'. Since T is Souslin, each Ex.~., is countable. Hence we may define 

? ( a  + 1) to be the least ? such that y > y ( a )  and for all x,f,n as above, 

E,,r.. C_ T[% For each (x, f)E i"., and each x ' E  T~(~+~) with x<rx', and each 

n Eto  such that x ' l I -B")rU{(h,&)}~7` '', put (x',fU{(n,a)}) into ir'.+~ (to 
extend (x, f)). Clearly, this definition preserves conditions (I)-(III). 

Suppose finally that l im(a)  and we have defined T[a,y[et .  Set y ( a ) =  

super.,/(/3). Let Xo~ Tvt,). Set 

{f [(ax f) e I 

By condition III, 

(a) x0 I~-n "I~,',o is a normal subtree of 7"16 which is closed under immediate 

successors". Let Y,o = {(x, .f)[ x < rXo & (x, .f) E 7` [ at }. 

Suppose first that So fl Y~o is not cofinal in Y,o (under _-<~,). Let (x, f)E 
Then xolI-B ")rE 7`'. Hence, as 

I[ ~ is appropriate for / ) I1"=  1, 

we have 
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(b) xolF"if h _Dr and h E A,.f and (V~ < &)(h If  E 7~), then h E IF". But (a) 
and the fact that I[ IF is appropriate f o r / )  [[a = 1 also gives: 

(c) Xo IF "there is h _D ] such that h E .4,.f and (Vs ~ < &) (h I ~ ~ ff'~o)"- By (c) 

we must be able to find an h D_ [, h ~ A,.f, such that (V~ < a )  (h I~: E W,o). By (a) 

and (b), we have 

Xo II-"/~ e IF". 

Put (xo, h) into IF~ (to extend (x, f)). Add one such extension for each pair 

(x, [) E IF l a with x <rxo. 
Now suppose S, O Y~o is cofinal in Y~o- In this case, add (as above) an 

extension (x0, h)  of each pair (x, f ) E  IF la  with x <rXo, such that (x, f )  extends 

some member  of S~ n Y~. 

It is easily seen that this defines IF, so as to preserve (I)--(III). That completes 

the construction. The following two lemmas complete the proof of 3.2. 

3.4. LEMMA. II IF has an tSrbranch II a = 1. 

PROOF. We give an intuitive, forcing proof. Let /~ be a generic branch of IF. 

Let/~ = {.IF I (=Ix) [(x, f )  E/~]}. Then/~ is a generic branch of IF. [] 

3.5. LEMMA. IF is a Souslin tree. 

PROOF. Let A be a maximal, pairwise incomparable subset of T. Let 
= {u E IF I (::1 a E A ) (a -< ~-u)}. then ,4 is cofinal in IF. For each (x, f )  (E IF, now, 

let E,.f be a maximal, pairwise incomparable subset of the set 

{ x ' E  T l(x <rx ') & (3f '  D f)  [(x', f ' )  E A 1}. 

Since T is Souslin, E,.~ is countable. Let 

C = {or E to, IT(a ) = a &  IFla = IFA v , &  Ot (x , f )E  IFItr)(E,.f c_ T l a ) } .  

Clearly, C is closed and unbounded in to,. So we can pick an a ~ C with 

S, = fi, O IF I t~. Let xo E T, now. Suppose (x, / )  ~ Y~o. Pick/o D / with (Xo, fo) E 

IF.. Since/~ is cofinal in 1F there is an (x ' , / ' )  E /~  such that (xo, fo)<=~(x',['). But 

E,.f C_ T I a, so we cannot have x '  E E.,r. So, as (x', f ' )=  t(x, f),  it must be the case 

that for some x"<rXo, X"EE,, f .  Pick [ " D r  so that (x", f") E .4. Then 

(x", f")>-~(x, f )  and (x" , f " )E  S, and (x",/")(E Y~o. Hence S, n Y~o is cofinal in 
Y~o. Thus, by construction, every element of IF of the form (Xo,/0) for some/o  

extends a member  of ,4. But xo E T~ was arbitrary. Hence every member  of IF, 
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extends a member of A, hence of A. Thus as A is pairwise incomparable, 

A = A N 2r I tx. Hence A is countable. The proof is complete. [] 

By comparison with the development in [2], it is easily seen that a simple 

modification of the above consistency proof will yield the following more general 

result: 

3.6. THEOREM. Assume GCH. There is a generic extension V* of V such 

that: 

(i) V * ~ G C H ;  

(ii) V and V* have the same cardinals and cofinality [unction; 

(iii) V and V* have the same countable sequences of ordinals ; 

(iv) I f  D is an array of filters in V, then 

V* ~ "Every tree which is appropriate [or D has an tol-branch " [] 

w Consistency of SAD + there exists a Souslin tree 

We show now that our principle does not imply the Souslin hypothesis. 

DEFINmON. For a ~ I~, (V, S , A )  is a possible situation iff V and S are 

normal trees of height a, A is a function Dom A = S, and for s ~ S, A (s) C V is 

a (possibly void) subset of pairwise incompatible elements in V such that: 

(1) s < s' ::), A (s) C A (s'), 
(2) if A ( s )~  O and u ~ V then for some s '>- s, A (s') contains an element 

compatible with u. 

At first, using a <>-sequence (Sa [a < to1) we build (in L)  a Souslin tree U 

having the following property: For all ot ~ l~, if Sa ---(Ula,  S, A )  is a possible 

situation, then for any u ~ Ua and s E S such that A (s) ~ O there is s' > s such 

that u is above some element of A(s ' ) .  

Next we show that the construction of the boolean algebras (By Iv < oJ2) can 

be carried out in such a way that II u is a Souslin tree II B~ = 1 for all a < to2, hence 

getting the desired situation. 
We shall deal here only in the case of the successor stage; the reader familiar 

with Jensen's iteration lemma will then have no problem in providing the 

argument for the limit stages. 

So we have to strengthen Lemma 3.2, adding II u is Souslin lIB = 1 to the 

hypothesis and getting II u is Souslin II j : 1 in the conclusion. 

Let T be a Souslin tree, a Souslinisation of B, as in the proof of Lemma 3.2, D 

a principal array. We build T as in the proof, but with the following change. In 

case a is a limit ordinal, ~/o = a, we add a further possibility: Suppose 
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So = (Ula, 7"la, A)  is a possible situation such that the following hold: Let 

XoE T, co) and let (U,  In < ca) enumerate  Ua. Then there exists an increasing 
sequence (or, In < ca) of limit ordinals, cofinal in a, such that for any n and 

(x, f)  E Y~o, (x, jr) E 7" I a.,  if A ((x', jr')) # O for some extension (x', jr') of (x, jr) in 
Y,0 then there is such an extension in Ta., with U, above an element  of 
A ((x', jr')). In this case, we construct a normal subtree W*o of W,o, closed under  
successors, with the additional property: 

For any (x', jr ')E Y,o N To. if jr 'E W* o and A ((x', jr ' ))# O then U, is above 
some element  in A ((x ', jr')). As before for each pair (x, jr) E 7" I a, x < xo we find 
h _Djr, h EAo.I such that 0r < a ) ( h  I~:E W'o) (this time) and put (xo, h) into 
7'o. It follows in this case that if A((x, jr))# 0 then (.J,<~,~h)A (s) is a maximal 
anti-chain in U! 

The proof of 3.5 shows that T is a Souslin tree. To prove that in forcing over T, 
U remains Souslin, suppose that A is a name in V B~) and (x, jr)H-t"A is a 
maximal anti-chain of 0 and ~ E A" .  

Define for (2, f )  _-> (x, jr), A ((2, f))  = {u E V I(g, f)IF- ~ ~ A } a countable pair- 
wise imcompatible subset of U. (U is Souslin.) For (~,f)~(x, jr) define 
A ((~, f))  = 0 .  

Now construct an increasing and continuous chain of elementary submodels 
Mo ~< H,~, a < ca1, such that/Mr. E M.+I and T, U, 2r, A E M.. Ma is collapsed to 
/~r. which is transitive and ca1 is collapsed to 8~. {a 18. = a} is closed unbounded  
so we find a < ca1 such that ~5. = a, y~ = a and So = (U I a, T I a, a I ( T l a ) ) i s  a 
possible situation. U I a, T la are Souslin trees i n / ~ r  such that in/~ra, II u l a is 
Souslin II "^~ = 1. So (U l a )  x ( T l a )  satisfies the C.C.C. in/~ro, hence II T l a  is 
SouslinlI"^~~ 1 in ~ro. For any uEU. ,  (~={a laEU & a<u}  is an 
M.-gener ic  branch of U I a, and in the generic ex tens ion /~r  [a] the following 
holds because of the property of U:  {(2, f )  ~ 2r I a I t~ N A ((~, f))  # O} E / ~ r  [a] is 
a dense subset of T I a above (x, jr). Now let Xo E To, x < Xo. As T I a is Souslin in 
/~ . [a ] ,  ~o = {x E Tla Ix < Xo} is M,  [a ]-generic and we find that i n / ~ . [ a ]  [~0] 

every (x', jr') E i '  I a such that x '  < Xo and A ((x', jr')) # O has an extension 
(x ;', jr") _-> (x ', jr'), x" < xo such that A ((x", jr")) f'l a # O. It follows that the special 
case ment ioned before holds and that we put (Xo, h ) ~  2r,, (Xo, h ) >  (x, f), such 
that (xo, h)  II- At C_ U I a (hence is countable). 

So we have proved II U is Souslin II B^~t~ = 1. 
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